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High-temperature series analysis of an O(2)-symmetric spin 
model with discretely valued interaction on 3~ lattices 

I-Hsiu Leet and Robert E Shrockt 
t Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA 
$ Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11794, 
USA 

Received 4 January 1988 

Abstract. A detailed analysis is given of high-temperature series expansions for the suscepti- 
bility of an 0(2)-symmetric spin model with discretely valued spin-spin interaction on SC, 
BCC and FCC lattices. This analysis indicates that the model is in the same universality 
class as the regular 3~ O ( 2 )  spin model. New results are given for the critical amplitudes. 
We also list and discuss series expansions for the free energy and specific heat. 

1. Introduction 

The critical properties of a statistical model are understood to depend on the space P 
in which the order parameter lies, the (zero-field) symmetry group G of the Hamiltonian 
or Euclidean action, and the dimensionality d. At a very general level, one may classify 
such a model according to whether P and G are discrete or continuous. In commonly 
studied models, the interaction between the fundamental variables, for example spins, 
is taken as a continuous function if these variables are continuous, and discrete if they 
are discrete. Examples include the Ising model and its generalisations to 2, clock 
and (scalar) Potts models, vertex models and O ( N )  models. What happens if the 
variables are continuous but the interaction is discrete? In particular, if one takes a 
given model with continuous P, G and interaction, and changes this interaction to a 
discretely valued one, does this change the universality class of the model? Moreover, 
introducing a discretely valued interaction in a model with continuous variables yields 
a far-reaching property of non-zero ground-state disorder. However, this disorder is 
not necessarily associated with any frustration. What effect does this type of ground- 
state disorder have on the critical properties of the theory and on the long-range order? 

These questions were, to our knowledge, first studied by Guttmann et a1 (1972), 
Guttmann and Joyce (1973) and Guttmann and Nymeyer (1978). These authors 
considered an 0(2)-symmetric spin model with a (nearest-neighbour) spin-spin interac- 
tion of the form sgn(S, * S,).  Guttmann and Joyce (1973) obtained an exact (zero-field) 
solution in one dimension which showed that the model remained disordered, with 
finite correlation length and no long-range order, for all temperatures including T = 0. 
Using also a discretised form for the coupling to an external magnetic field, namely 
sgn(H. S , ) ,  Guttmann and his collaborators calculated high-temperature series 
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expansions for the (zero-field) specific heat and a certain quantity analogous to the 
susceptibility. From these, it was concluded that, for dimensionality d = 3, the model 
was in the same universality class as the regular 0(2)-symmetric spin model with 
interaction S, * S,. 

Realisations of models with continuous variables but discretely valued interactions 
arose subsequently in several contexts. Studies were carred out (Barber et al 1985, 
Barber and Shrock 1985) of a 4~ lattice gauge theory with local U ( l )  gauge invariance 
and an action containing both a continuous interaction defined on plaquettes and an 
integer-valued monopole density interaction defined as a function of the twelve angles 
parametrising the gauge group elements on the links of each 3-cube. The monopole 
density operator is necessarily discretely valued, since the monopole charges are 
integers, which, in turn, is a result of the mathematical property that the first homotopy 
groups of SI is r , ( S ’ )  = 2. Thus the lattice gauge theory with this monopole density 
operator is an example, albeit a rather complicated one, of models with continuous 
variables (the U ( l )  gauge group elements on each link) and a discretely valued 
interaction. Related studies (Kohring et a1 1986, Kohring and Shrock 1987) were 
carried out of a 3~ spin model with global O(2)  symmetry and a Hamiltonian consisting 
of the usual Si - S, spin-spin interaction together with a local vortex loop density 
operator defined on plaquettes (in a simple cubic lattice). The vortex loop density 
operator is a discretely (integer) valued function of the four angles specifying the 
orientations of the spins on the corners of the plaquette. As in the 4~ U ( l )  lattice 
gauge theory, it is a topological density and takes on discrete values as a consequence 
of the fact that r l ( S ’ )  = 2. A third example is provided by neurons in a neural network. 
These may be viewed as operators which depend on a number of continuously varying 
input voltages from synaptic connections to other neurons, and which take on two 
values (say 1 and 0, corresponding to firing or resting). A final example is a non-linear 
circuit device which, depending on continuously varying input voltages or currents, 
produces an output current or voltage which has two (or a discrete set of) values. It 
is thus clear that there is ample physical motivation for the study of models with 
continuous variables and discretely valued interactions, in addition to the underlying 
statistical mechanical issues which spring to mind. 

In view of the complexity of the integer-valued twelve-angle monopole density 
operator in the 4~ U( 1) lattice gauge theory and the four-spin vortex density operator 
in the 3 ~ 0 ( 2 )  spin model, there was a motivation for constructing a model with 
continuous variables having a simpler discretely valued interaction. One of the simplest 
such models, and hence an optimal one for study, is the 3 ~ 0 ( 2 )  spin model with a 
nearest-neighbour two-spin interaction taking on just two discrete values. A brief 
report on an analysis of this model was given by Lee and Shrock (1987). In the present 
paper we shall present the details of this analysis, together with new calculations of 
the critical amplitudes. We shall also take this opportunity to compare our results 
with the earlier work by Guttmann and Joyce (1973) and Guttmann and Nymeyer 
(1978) on a closely related model. Our main tool is the analysis of high-temperature 
series expansions for the susceptibility in this model, for the simple cubic (sc), 
body-centred cubic (ecc) and face-centred cubic ( FCC) lattices. 

The paper is organised as follows. In 0 2 the model is defined and in 0 3 the 
susceptibility series are discussed. Section 4 contains an analysis of these series yielding 
determinations of the critical exponent, critical point and critical amplitude. In 0 5 
we discuss the high-temperature series for the free energy and specific heat. Section 
6 contains our conclusions. 
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2. The model 

For our reference model, we shall take the (classical) O(2) spin model (also called the 
plane rotator model), with Hamiltonian 

2 = - J  si . s, - H * C s, 
(11) I 

where ( i j )  denotes nearest-neighbour pairs of lattice sites i and j. To study the effect 
of a discrete interaction, a simple and natural choice is to replace the usual scalar 
product spin-spin interaction by sgn(S, S,). This yields a model defined by the 
partition function 

(2.2a) 

where dR‘”= (27r-’ST,, d e  is the unit-normalised measure on SI, /3 = ( k , T ) - ’  and 

X = - J  C sgn(S , .S , ) -H*CS, .  (2.2b) 

Evidently, the model (2.2) shares features of both the usual O(2) and Ising models: 
although the symmetry group of the zero-field Hamiltonian is O(2) and the spins 
SI E SI, the spin-spin interaction takes on the same values as in the Ising model. We 
shall see how this twofold nature will manifest itself in the properties of the model. 
We first observe that the spin-spin interaction has a finite two-term character expansion, 
just as in the regular Ising model, and in contrast to the infinite-series character 
expansion (in terms of modified Bessel functions) for the regular O(2) model. Hence, 
we can rewrite the partition function (2.2) as 

(11) I 

where 

u = tanh K (2.3b) 

For comparison, the model studied by Guttmann and Joyce (1973) and Guttmann 
with K = PJ,  and where NI denotes the number of links in the lattice. 

and Nymeyer (1978) is defined by the partition function ( 2 . 2 ~ )  with 

X= - J  sgn(S, * S,) -E sgn(H- S I )  (2.4) 
( I / )  I 

i.e. the standard coupling to an external field is also replaced by a discretised form. 
One may ask whether this discretisation of the coupling to an external field changes 
the universality class of the model (2.4) relative to that of (2.2). As discussed below, 
our study answers this question. 

3. High-temperature susceptibility series 

In order to investigate the critical properties of the model (2.2), we have calculated 
high-temperature series expansions for the (zero-field, isothermal) susceptibility x on 
the sc, BCC and FC lattices. As usual, it is convenient to define the reduced susceptibility 

f = p - ’ x  (3.1) 
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whence 

(3.2) 

(where each pair (i, j )  = ( j ,  i )  is counted only once in the sum). Let us for the moment 
consider the O ( N )  generalisation of (2.2)-(3.2). The graphs contributing to (3.2) may 
be classified as chain and non-chain graphs. For the former, we have found the 
important theorem that (for arbitrary dimensionality and lattice type) the corresponding 
integrals 

I +  1 

Z(c,)= n dR',"S, . S , + ,  n sgn(S;Sn) I k=l (m,n)cct  

= R', (3.3a) 

where (m, n) denote successive nearest-neighbour links in the chain graph cl and 

(3.3b) 

We have proved this by an iterative argument, starting with the one-link case. It follows 
that a natural variable for the high-temperature series expansion for the susceptibility 
of the O ( N )  generalisation of (2.2) is 

U N  R N u .  (3.4) 
Furthermore, writing 

(where the subscript A denotes the lattice type) it follows, as a first corollary of theorem 
(3.3), that for the O ( N )  generalisation of (2.2) 

bA,/ = (bA./) ls ing for 1 < lA,p (3.6) 
where lp denotes the first order where a non-chain graph contributes to x. These are 

for A =  (3.7) 

As a second corollary, 

~ ( u ~ ) = x ~ s i n g ( ~ +  U N )  for A = Cayley tree (3.8) 
i.e. the susceptibility is given by the Ising susceptibility with the replacement of U by 
t rN .  In particular, for the case of a d = 1 lattice, we obtained the exact result for the 
O( N )  generalisation of (2.2) that 

(3.9) 

Since R N  < 1 for all N 2 2, it follows from (3.9) that for this case 2 is never singular, 
in sharp contrast to the d = 1 Ising and O( N 2 2) models, where 2 has, respectively, 
essential and algebraic divergences at T = 0. The two-spin correlation function was 
calculated to be 

(3.10) (So * S,) = U& 

so that the correlation length is 

(=  - l / h  U N  (3.11) 
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which never diverges, even at T = 0, where it reaches its maximal value: 

These findings generalised the N = 2 results of Guttmann and Joyce (1973). 

[( T = 0 )  = - l / ln  RN. (3.12) 

Returning to the O(2) case under study here, we use the expansion variable 
l7=v2=2vj.rr (3.13) 

and write the reduced susceptibility as 
CO 

,fA = 1 + C b,,,Iij’. (3.14) 

We have calculated the series coefficients b,,,, to order I = 7 for a general lattice and 
I = 8 for the simple cubic (square and hypercubic) lattice. The results were given for 
the three d = 3 lattices, FCC, BCC and sc, in Lee and Shrock (1987). For the reader’s 
convenience, they are also included here in tables 1-3. The d = 2 results will be analysed 
in a separate paper (Lee and Shrock 1988). 

I = 1  

Table 1. Susceptibility coefficients bFCC,I for the FCC lattice. 

I bFCC.i 

1 12 
2 132 
3 1404 
4 14 700 - 3 7 ’  
5 152 532-36r r2 -547 ’ -7 r4  
6 
7 16 172 148-69547’- 1 2 4 3 2 ~ ~ - 2 6 0 7 ~ r ~ - ~ ~ ’ - ~ i ~ ~  

1573 716 - 1 8 0 ~ ’  - 1071 v3 - YT‘ - ST’ 

Table 2. Susceptibility coefficients bee,, for the BCC lattice. 

I 4cc.r  

1 8 
2 56 
3 392 
4 2648 
5 17960-2n4  
6 1 2 0 0 5 6 - 3 6 ~ ’ - 2 3 ~ ~  
7 804 824 + 2167’ - 300n4 - f d 

Table 3. Susceptibility coefficients kc,, for the sc lattice. 

I 4 C . I  

6 
30 
150 
726 

1 6 9 2 6 - f r 4  
81 390+ 547’ - 97‘ -;g6 

387 966+84r2 -222r4 -%in6  

3534-tn4 
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Because of the property (3.6), the susceptibility series have the interesting and 
unusual feature that in low orders they are Ising-like (in terms of the variable u N )  
whereas, as I increases above I,,,, they deviate from the corresponding Ising series 
and exhibit the true thermodynamic properties of the model (2.2). 

4. Analysis of series 

4.1.  General 

We have analysed the series (3.11) for the FCC, BCC and sc lattices using the ratio test, 
Neville tables and Pad6 approximants. These methods are reviewed in Gaunt and 
Guttmann (1974) and Baker (1975). The critical singularities are assumed to be of the 
generic form 

( 4 . 1 ~ )  X ( C ) F C C , ~ , ~ ~  - A ( ~ ) F c c [  1 - f i / ( ~ c ) ~ = c c I ~ ~  

for the close-packed FCC lattice, and of the form 

d ( 6 )  \ ,sl”g- A(C) ,[I - O/(f i , )  ,1YY + B ( 3 )  ,[I + 6/(Gc) ,le (4 . lb )  

for the loose-packed BCC and sc lattices, where A denotes lattice type, and A (  a), and 
B( a), are analytic. The lattice independence of the critical exponent y, as indicated 
in (4.1), will be shown to be in agreement with our results. The second term in (4 . lb )  
reflects the presence of the antiferromagnetic critical point at v = - v c ,  where U, is the 
ferromagnetic critical point. Although general arguments analogous to those given for 
the Ising model (Danielian 1964) imply that there is an antiferromagnetic phase 
transition for the model (2.2) on the FCC lattice, our series, as will be seen, do not 
give evidence for a critical singularity associated with a second-order phase transition 
at this point. This is similar to what was found for the d = 3 Ising model (Sykes er a1 
1972) and suggests that, for the model (2.2), the antiferromagnetic transition on a FCC 

lattice is first order, just as it has been shown to be (Phani er a1 1980, Polgreen 1984) 
for the Ising model on the FCC lattice. 

Using the expansion 

( 4 . 2 ~ )  

and defining the critical amplitude as 

A \ = A 1.0 (4.2b) 

and similarly for E( B ) ,  the generic form for the dominant singularity of the susceptibility 
can be expressed as 

R(C)+,-A,[l -6/(Cc),]-’. (4.3) 

The higher orders of the Padi tables for d In X( C)/d6 are given in tables 4-6 for 
the FCC, BCC and sc lattices, respectively. In  the [ N ,  $31 entry in each table the upper 
number is the pole at C = 6, and the lower number is minus the residue at this pole, 
namely the exponent y. We recall that, for a given order, the diagonal and near-diagonal 
entries in a Pad6 table are given the most weight because the diagonal [A”, X I  entry 
is invariant under Euler transformations of the form B + B‘ = aC/( b6 + c), which are 
often used to improve results obtained from analysis of series. 
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Table 4. Pade table for d In , f (C)/d8 for the FCC lattice. In each 91 entry, the upper 
number is the pole at t: = 8, and the lower is the corresponding value of y. The symbol 
'a' indicates an approximant Nith a spurious nearly coincident pole-zero pair near to the 
origin. 

9 0 1 2 3 4 5 

1 

L 

3 

4 0.103 822 

5 0.103 812 

6 0.103 773 

1.335 8 

1.335 2 

1.332 1 

0.103 725 0.103 795 0.103 774 
1.329 3 1.333 8 1.332 2 

0.103 760 0.103 819 0.103 779 
1.331 6 1.335 7 1.332 6 

0.103 835 0.103 810 0.103 787 
1.336 7 1.335 0 1.333 3 
0.103 813 0.103 872" 
1.335 2 1.338 1" 
0.103 825" 
1.336 0" 

Table 5. Pade table for d In ,f(C)/dG for the BCC lattice. In each [-$', 561 entry, the upper 
number is the pole at fi = 6, and the lower is the corresponding value of y. 

"4. 

9 0 1 2 3 4 5 

1 0.150068 0.167 253 0.152 880 

2 0.157 875 0.159 178 0.159 252 

3 0.158 464 0.160 034 0.159 255 

4 0.153 792 0.159 565 0.159 348 

5 0.165 326 0.159 306 

6 0.156 119 

1.022 5 1.758 2 1.025 5 

1.292 0 1.336 9 1.340 0 

1.313 2 1.378 4 1.340 2 

1.144 3 1.354 7 1.345 0 

1.702 7 1.342 8 

1.178 3 

4.2. Critical exponent y 

As usual, the results for the critical point, exponent and amplitude extracted from the 
FCC series show the most rapid approach to fixed values. As can be seen from table 
4, by the order 1 = 7 in (3.5), the FCC series already yields quite stable values for y 
and &. Using tables 4-6, together with Neville tables which we have calculated, we 
infer the susceptibility critical exponents y = 1.33 kO.01 for FCC, 1.34k0.04 for BCC 
and 1.37k0.07 for sc. Since the FCC series gives by far the most stable results, our 
overall determination of y is dominated by the FCC value. We find 

(4.4) y = 1.33 * 0.01 
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Table 6. Pade table for d In R(D)/dB for the sc lattice. In each [N, 93 entry, the upper 
number is  the pole at D = U, and the lower is the corresponding value of y. The symbol 
‘cp’ denotes a complex pair of poles. (For example, in the [2,3]  entry, the pair is 
0.2442 f 0.0160i.) 

9 0  1 2 3 4 5 6 

1 0.209 318 0.235 409 0.215 221 0.230 530 

2 0.219 853 0.222 719 0.223 776 0.223 780 

3 0.220371 cp 0.224 216 0.223 780 

4 0.216 854 0.223 209 0.224 532 0.223 578 

5 0.231 093 0.224 258 0.223 995 

6 0.220 839 0.223 888 

7 0.225 889 

1.013 6 1.823 6 1.064 9 1.722 7 

1.272 6 1.343 0 1.375 8 1.376 0 

1.285 9 - 1.393 7 1.376 0 

1.193 0 1.360 7 1.407 6 1.366 8 

1.694 7 1.395 9 1.385 6 

1.259 7 1.380 8 

1.485 4 

which is lattice independent, to within the uncertainties cited for all of the three lattice 
types. For comparison, high-temperature series expansions for the regular 3~ classical 
O(2) (plane rotator) model give y = 1.318i0.010 (Ferer er a1 1973, see also Bowers 
and Joyce 1967), while a combined analysis of high-temperature series expansions for 
the 3~ plane rotator model and the 3~ S = a  quantum XY model, which should be 
in the same d = 3, N = 2 universality class, yields y = 1.333*0.010 (Rogiers er a1 1978, 
1979). A field-theoretic method using the E expansion gives, for the d =3 ,  N = 2  
universality class, the values y = 1.316 * 0.0025 and y = 1.324, depending on the method 
(Le Guillou and Zinn-Justin 1980). We conclude that the value (4.4) is equal, to within 
the uncertainty, to the susceptibility exponent for the regular 3~ O(2) model. Thus, 
to the accuracy with which we have determined the universality class of the model 
(2.2), it is the same as that of the regular 3 ~ 0 ( 2 )  model. In passing, it may also be 
noted that the value (4.4) is strongly inconsistent with the value of y for the 3~ O( N )  
model with any other value of N than N = 2. 

It is also of interest to compare our result with that found previously for the model 
(2.4). The closest quantity to a usual reduced susceptibility in model (2.4) is 

Instead, Guttmann and Joyce (1973) and Guttmann and Nymeyer (1978) studied the 
function 

since the series for the latter function is easier to calculate. As compared with our 
susceptibility series, the series for (4.6) is much simpler; for example, the series 
coefficients are integers, as in the Ising model. In contrast, our susceptibility series 
coefficients for the model (2.2) are polynomials in .rr, the complexity of which increases 
with increasing order. When the function (4.6) was fit to a singularity of the form 
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( 1  - U /  U,)-*, it was found that A = 1.335 f 0.010, consistent with being lattice indepen- 
dent. Moreover it was conjectured by Guttmann and Joyce (1973) that the singularity 
of the function (4.6) would be the same as that of (4.5). Comparing this result with 
our determination (4.4), we find that the critical exponent defined by the singularity 
in (4.6) is equal, to within the uncertainty, to the susceptibility exponent y for the 
model (2.2). Accepting the suggestion that (4.6) and (4.5) have the same singularities, 
this indicates that models (2.2) and (2.4) are in the same universality class (the zero-field 
properties are, of course, identical). 

4.3. Critical point 

Our Pad6 and Neville table analyses of the high-temperature susceptibility series yield 
the following values for the ferromagnetic critical points of the three lattices: 

(17,)Fcc = 0.1038 f 0.0002 

( f ~ , ) ~ ~  = 0.224 * 0.002 

(4.7a) 

(4.7 b )  

(4.7c) 

and the resultant values for K ,  listed in table 7.  These results are in excellent agreement 
with the values obtained for the FCC lattice by Guttmann et a1 (1972) and Guttmann 
and Joyce (1973), and for the BCC and sc lattices by Guttmann and Nymeyer (1978), 
using the high-temperature series for the function (4.6). 

(0c)BCC = 0.159 f 0.001 

Table 7. Inverse critical temperature ( K c ) , ,  for sgn O ( 2 )  model on FCC, BCC and sc lattices. 
For comparison, values of ( K c ) , ,  for the d = 3 king and regular O(2) (plane rotator) models 
are listed; these are from (a) (Sykes er a /  1972) and (b) (Ferer et a/ 19731, respectively. 
The latter have typical uncertainties of 1 in the last digit. 

Lattice A Ising" sgn 0 ( 2 ) ,  this work O ( i ) b  

FCC 0.161 19 0.1645 * 0.0002 0.2075 
BCC 0.250 33 0.255 f 0.002 0.320 
sc 0.357 1 0.368 * 0.004 0.454 

Table 7 shows a comparison of the values for the critical point of the sgnO(2) 
model determined from our study with the corresponding critical point values for the 
3~ Ising and regular O ( 2 )  models. It indicates that 

(Kc).\ , lsing < (Kc)* ,sgn0(2)  < ( K 2 ) , \ , 0 ( 2 1  (4.8) 
for each lattice type A. We can explain this as follows. It should first be noted that 
the short-range order in the sgn O ( N )  model actually builds up more rapidly, as the 
temperature decreases from infinity, than in the regular O( N )  model. This is demon- 
strated by the lowest-order high-temperature expansions of the nearest-neighbour 
correlation functions in these respective models: for the general O ( N )  case and an 
arbitrary lattice type, 

(si.sinn)= K / N + o ( K ~ )  for the regular O( N )  model (4.9) 
where i and inn denote a nearest-neighbour pair of sites, whereas 

(si. sin") = R ~ K  + o ( K ~ )  for the sgn O ( N )  model (4.10) 
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where RN was given in (3.36). Now, since 

RN > 1/N V N 2 2  (4.11) 

it follows, as stated, that for general N 3 2, the short-range order (which is measured, 
for example, by the nearest-neighbour two-spin correlation function) grows more 
rapidly with K in the sgnO(N)  model (2.2) than in the usual O ( N )  model (2.1). 
(Here and elsewhere, it is assumed that N 3 2, since the O( 1 )  model is, of course, just 
the Ising model and does not have continuous spin variables.) This behaviour is, at 
first sight, rather remarkable, since the spin-spin interaction in the sgn O( N )  model 
allows a far more disordered spin configuration than that of the regular O( N) model. 
However, the result (4.10) can be understood as due to the fact that the low orders in 
the high-temperature series expansion of (S ,  S,J are Ising like in the scaled variable 
v N .  Evidently, the more rapid build-up of the short-range order in the model (2.2), 
as compared with the regular O(2) model, leads to the phase transition and onset of 
long-range order at a higher temperature than in the latter model. The first part of 
the inequality (4.8) is also interesting. One would clearly expect that, since there is 
more intrinsic disorder in the sgnO(2)  model than the Ising model, the critical 
temperature for the former should be lower than that for the latter model, and (4.8) 
confirms this expectation. What is interesting is how close the critical points are for 
these two models; for each of the three lattice types A, (K,),,,gn0(2) is only about 2% 
larger than the respective value (K,) 

The greater intrinsic disorder in the sgn O( N) model with respect to the regular 
O ( N )  model manifests itself in the property that, at zero temperature, neither the 
short-range order nor the long-range order saturate at unity. Instead, as we have shown 
by Monte Carlo simulations, 

(4.12) ( S ,  - S,J( T = 0) = 0.75 f 0.01 

and 

M (  T = 0) = 0.83 f 0.02. (4.13) 

4.4. Critical amplitudes 

We have calculated the high-temperature series for j (  0) ;’’ in order to obtain the 
critical amplitudes. Since these series should have simple pole singularities, it is not 
necessary to take a logarithmic derivative before calculating the Pad6 approximants. 
Hence, one gains in sensitivity, although at the price of biasing the result via the input 
value of y. In tables 8-10, we give the Pad6 tables for the FCC, BCC and sc series for 
X( U);”, using the central value y = 1.33 in (4.4). We have also calculated corresponding 
series and Pad6 tables using the upper and lower 1c limits in (4.4). From a comparative 
analysis of all of these, we obtain the results 

( 4 . 1 4 ~ )  

(4.14b) 

( 4 . 1 4 ~ )  
Substituting the respective values of 17, from the d In j(O)/dC Pad6 analysis, (4.7) or 
equivalently, to within the quoted uncertainties, directly from the poles of f (  U ) ” ” ,  
and solving for A , ,  we calculate the critical amplitudes for the susceptibility listed in 
table 1 1 .  We find that the critical amplitudes for the FCC and BCC lattices are consistent 

1 / 1 3 3  - 
(U , )FCCAFCC - 0.0959*0.0010 

( 0,) BCCA$:,‘,33 = 0.147 1 f 0.0020 

( Oc)scAic 33 = 0.220 f 0.010. 
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Table 8. Pade table for j(O):,',". In each [.+', 91 entry, the upper number is the pole at 
O = 8, and the lower one is minus the residue at this pole. The symbol 'a' is defined in 
table 4. 

a 0 1 2 3 4 5 6 

1 0.103 723 0.103 735 0.103 746 0.103 750 
0.095 744 0.095 798 0.095 862 0.095 886 

2 0.103 723 0.103 731 cp 0.103 752 
0.095743 0.095776 - 0.095 900 

3 0.103 736 0.103 736 0.103 908 0.103 748 
0.095 802 0.095 802 0.099 052 0.095 867 

4 0.103 757 0.103 736 0.103 736" 0.103 752 
0.095 901 0.095 802 0.095 802a 0.095 899 

5 0.103 738 0.103 743 0.103 750 
0.095 816 0.095 842 0.095 885 

6 0.103 745 0.103 756 
0.095 853 0.095 933 

7 0.103 749 
0.095 879 

Table 9. Pad6 table for f ( t ' )L<:3.  In each [-+', 91 entry, the upper number is the pole at 
13 = 8, and the lower one is minus the residue at this pole. The symbol 'a' IS defined in 
table 4. 

.+. 

9 0 1 2 3 4 5 6 

1 0.160 288 0.158 138 0.159 660 0.158 662 

2 0.159 195 0.158 901 0.159 027 0.159 057 

3 0.159 474 0.158 851 0.158 995 0.159 064 

4 0.160 253 0.159 025 0.159 029 0.159 050 

5 0.158 214 0.159 029 0.159 024" 

6 0.159 638 0.159 048 

7 0.158 670 

0.15250 0.14254 0.15098 0.14449 

0.147 65 0.14647 0.147 08 0.147 25 

0.148 79 0.146 22 0.14690 0.147 30 

0.152 16 0.147 06 0.147 08 0.147 20 

0.143 12 0.147 08 0.147 06" 

0.15075 0.147 19 

0.14464 

with being equal, to within their uncertainties, and are slighly smaller than the critical 
amplitude for the sc lattice. This is the same behaviour as was found for the critical 
susceptibility amplitudes in the 3~ Ising and regular O(2) (plane rotator) model; for 
comparison, these critical amplitudes are also listed in table 11. Moreover, we observe 
the general inequality 

(&) , s ing>  ( A \ ) s g n 0 ( 2 ) >  ( A \ ) O ( ~ ] .  (4.15) 
It is interesting that, as was the case with the critical coupling K,, the values of the 
critical amplitude for the sgnO(2) model and Ising model are rather close. For 
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Table 10. Pad6 table for f ( 1 3 ) $ 2  33.  In each [N, 91 entry, the upper number is the pole 
at 17 = 6, and the lower one is minus the residue at this pole. 

x 

9 1 2 3 4 5 6 

L 

3 0.221 770 
0.210 40 

4 0.222 254 0.222 316 
0.212 95 0.213 25 

5 0.222 320 0.222 218" 
0.213 27 0.212 83" 

6 0.222 532 0.225 626 
0.214 51 0.304 71 

7 0.222 694 
0.215 614 

0.222 061 0.222 284 0.222 573 0.222 725 
0.21 1 96 0.213 07 0.214 80 0.215 86 
0.222 245 CP 0.223 172 
0.212 85 - 0.220 49 
0.222 562 0.223 118 
0.214 68 0.219 80 
0.223 718 
0.229 56 

Table 11. Critical amplitudes A,, for the susceptibility of the sgn O(2) model (2.2) on FCC,  
BCC and sc lattices. For comparison, critical amplitudes for the susceptibilities of the 
d = 3 king  and usual O(2) (plane rotator) models are listed; values are from (a) Sykes er 
a/ (1972) and (b) Ferer er a1 (1973), respectively. 

Lattice A king" sgn O(2) o ( a b  

FCC 0.963 f 0.002 0.900 fO.010 0.4577 f 0.0010 
BCC 0.967 * 0.003 0.902*0.015 0.466 * 0.002 
sc 1.1016 f 0.0010 0.976 f 0.050 0.5135*0.0025 

reference, the critical amplitudes for the function (4.6) were calculated for the BCC 
and sc lattices by Guttmann and Nymeyer (1978) and are A(4.6),BCC = 1.081 kO.004 and 
A(,,6,,sc= 1.121 *0.003. 

4.5. Antiferromagnetic singularities 

It is also of interest to investigate the singularities in the antiferromagnetic region 
( J  < 0). Since the free energy has a singularity, for loose-packed lattices, at U = -U=, 
the susceptibility will also. However, it is not expected that this singularity at U = -U, 
in the (uniform) susceptibility will be divergent. This is obvious from physical consider- 
ations: at U = - v c r  the system is on the verge of antiferromagnetic ordering, so there 
should not be any particularly large response to a uniform applied field. (Of course, 
the staggered susceptibility obeys the symmetry relation x(  -u),tagg = x(  U )  and thus is 
divergent at this point.) For the close-packed FCC lattice, as discussed above, although 
there is an antiferromagnetic phase transition, series expansions for x do not give 
evidence for it, indicating that it is first order. We thus concentrate here on the 
loose-packed BCC and sc lattices. In table 12 we show relevant results from Pad6 
approximants for d in x(  B)/dt7 on the sc lattice. For each entry, the uppermost listing 
is the pole in B at the ferromagnetic singularity. It is well known (see, for example, 
Gaunt and Guttmann 1974) that Pad6 approximants for d In j (  B)/dB will try to fit a 
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Table 12. PadC table showing the antiferromagnetic singularity in d,f( B),,/dO. In each 
entry [A>, 91, the uppermost listing is the pole representing the ferromagnetic singularity, 
the middle listing is the pole near the antiferromagnetic critical point and the lowermost 
listing is the zero at a slightly larger value of -17. 

9 1 2 3 4 5 

2 0.222 72 0.223 78 0.223 78 
-0.248 62 -0.292 61 -0.292 36 
-0.271 72 -0.373 09 -0.371 90 

3 CP 0.224 22 0.223 78 
-0.3083 -0.280 03 -0.292 37 
-0.4035 -0.329 85 -0.371 91 

4 0.223 21 0.224 53 0.223 58 
-0.235 92 -0.274 86 -0.286 77 
-0.250 54 -0.317 01 -0.347 49 

5 0.224 26 0.224 00 
-0.282 98 -0.309 38 
-0.339 46 CP 

6 0.223 89 
-0.297 28 
-0.401 20 

finite branch-point singularity in f ( B )  of the form in (4.lb), [1+  B/(Bc) , , l e ,  and its 
associated branch cut, by a pole near 17 = -( &),, followed by a sequence of alternating 
zeros and poles outward toward larger -B. In table 12, we give as the middle listing 
the pole near the antiferromagnetic singularity and, as the lowermost listing, the zero 
at a slightly larger value of -B. These show clearly the expected behaviour for a finite 
branch-point singularity in f ( I 7 ) .  Note that, in order for a Pad6 approximant to 
d In f (  I7)/dI7 to be able to give an adequate description of the branch-point singularity 
at B = -FC, it must have at least two poles (one for the ferromagnetic pole and one 
for at least the first pole in the pole-zero sequence) and at least one zero. That is, the 
[ N ,  91 PadC approximant must have N a  1 and 9 3 2. Only such entries are included 
in table 12. We have found similar results for the BCC susceptibility series. 

5. High-temperature series expansions for the free energy and specific heat 

Definining the reduced free energy as 

we can write the high-temperature series expansion for f (with zero external field) in 
the convenient form 

X 

fA = iq., ln(cosh K )  + a ,,,U’ 
1 = 3  

(5.2) 

for each of the three lattice types A =  FCC, BCC and sc, where q ,  denotes the coordina- 
tion number of the respective lattices. With the expansion variable U, as in ( 5 . 2 ) ,  the 
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coefficients a, are rational. The high-temperature series for the free energy is thus 
qualitatively simpler than that for the susceptibility, which involves polynomials in 71 

(and is Ising like in low orders if the expansion variable is taken as C). The coefficients 
a, were calculated to order v 9  for a general lattice and U” for loose-packed lattices 
and were listed for FCC, BCC and sc lattices in Lee and Shrock (1987). To render the 
present discussion self-contained, we include these results here as table 13. We recall 
that, because of the well known mapping between ferromagnetic and antiferromagnetic 
models on loose-packed lattices, it follows for these thatf( - U )  =f( U), whence aoddl = 0. 
From A one computes the specific heat per site, C, in the usual way. We write (with 
kg=  1) 

oc 

(5.3) 

Our results for the c,,, are listed in table 14. Although the magnetic-field-dependent 
properties of our sgnO(2) model and the model (2.4) are different, the zero-field 
properties are the same. Accordingly, we have compared our zero-field free energy 
series with the calculations by Guttmann and Joyce (1973, see their table 1) for the 
FCC lattice and Guttmann and Nymeyer (1978, see their table 1) for the BCC and sc 
lattices. We have been informed (Guttmann 1987 private communication) that the 
FCC coefficients listed for the O(2) step (sgn) model in table 1 of Guttmann and Joyce 
(1973) actually referrred to the quantity ( v / K ) ’ C / k ,  rather than C/k , .  (The 
coefficients for the Ising and regular O(2) models, however, did refer to C / k B . )  
Transforming the series to account for this factor ( U /  K )2, we find exact agreement to 

Table 13. Coefficients a,,, for the free energy, as defined in (5 .2) .  

3 0 
4 1 
5 0 

I 0 
8 210 
9 0 

5.4 6 15 

189L 

10616 
10 315 

0 4 
4 11 
0 35 
- 296 - 358 
I5 3 

0 30 

35 70 

0 I26 

13217 
4244 122567 

- 125408 
135 

Table 14. Specific heat coefficients c,,, defined by equation (5 .3) .  

1 sc BCC FCC 

2 
3 
4 
5 
6 
I 
8 
9 

10 

3 
0 

1 1  
0 
- 953 

0 
12469 
35 
0 

IS  

1179Lo) 
525 

4 
0 

0 
22292 

0 

0 

- 140 
3 

45 

~- 1821676 
315 

114665212 
lS75 

6 
24 

130 
644 
49726 
258491 

3216518 

I5 

1 5  

35 
I5692485 I 

315 
- 
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O(u9). (These authors also list an approximate numerical result for the FCC O(u'O) 
term.) As far as our sc specific heat series extends, it also agrees with that given 
(numerically, to O( u14) with an approximate numerical result for O( u ' ~ ) )  by Guttmann 
and Nymeyer (1978). Our BCC specific heat series disagrees past O( U*) with the series 
given by Guttmann and Nymeyer (1978). We are informed (Guttmann 1987 private 
communication) that the BCC series in Guttmann and Nymeyer (1978) is in error, and 
the corrected series agrees with ours to O ( U ' ~ )  (approximate numerical values were 
also given for the O(u'*) and O(uI4) BCC terms). 

As usual with specific heat series, these do not yield very precise determinations 
of the critical exponent a, but we can infer that a is consistent with the values found 
for the regular 3~ O(2) model (namely a = -0.02 i 0.03 from high-temperature series 
expansions (Ferer et a1 1973), a = -0.007 iO.006 from field-theoretic methods (Le 
Guillou and Zinn-Justin 1980)). 

6. Conclusions 

In summary, we have presented the details of an analysis of the high-temperature 
series for the susceptibility of the 3~ sgnO(2) model. This work indicates that, to 
within the accuracy with which we have determined it, the susceptibility exponent y 
for this model is the same as that for the regular 3~ O(2) model. Our results also show 
that the 3~ sgn O(2) model with the standard coupling to an external field is in the 
same universality class as a previously studied model (Guttmann and Joyce 1973, 
Guttmann and Nymeyer 1978) which has not only a discretely valued spin-spin 
interaction, but also a discretely valued coupling to an external field. In conjunction 
with an analysis of the specific heat, these results indicate that, for d = 3, the O(2) 
model with discretely valued spin-spin interactions is in the same universality class 
as the regular d = 3  O(2) model. We have also analysed the susceptibility series for 
the sgn O(2) model on a d = 4 hypercubic lattice and have again found that y is 
consistent with being equal to unity, thereby showing that (i)  for this case also the 
sgnO(2) model is in the same universality class as the regular O(2) model; and (ii) 
the upper critical dimensionality of the sgn O(2) model is d = 4, as for regular spin 
models. 

These results for the 3~ O(2) model may be contrasted with two exact results. First, 
consider the Gaussian model. For an arbitrary dimensionality d and lattice type A, 
if one switches from the usual continuous interaction E ~ E ,  to the discretely valued 
interaction sgn( E,&,) ,  the universality class is changed from Gaussian to Ising (Lee and 
Shrock 1987). The second exact result is the I D  O ( N )  models noted in 9 3, which 
never exhibit criticality or spontaneous symmetry breaking, even at T = 0. As these 
comparisons show, the question of the effect of changing the interaction from a 
continuously valued to a discretely valued one in a model with continuous parameter 
space P and zero-field symmetry group G is an interesting and delicate one. Since 
models with continuous P and G but a discretely valued interaction are realised both 
in the context of topological density terms in lattice gauge theories and spin systems 
and in the context of neural networks, it is important to understand the behaviour of 
such systems. 

There are several interesting topics for further investigation. First, as a consequence 
of the underlying property of greater disorder allowed by the sgn(S, S,) interaction, 
as compared with the regular usual S,  * S, interaction, neither the short-range nor the 
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long-range order saturates at unity in the sgn O(2) model. It would be very enlightening 
to find an analytic derivation of the T = 0 values of the nearest-neighbour spin-spin 
correlation function and the magnetisation (4.12) and (4.13) which we found by Monte 
Carlo measurements. Among other topics, it would be valuable to study correlation 
functions in theories such as the 3~ sgn O(2) model. Although universality consider- 
ations would lead one to expect that the mass gap exponent v and the exponent 77 
describing critical correlations would be the same as for the regular 3~ O(2) model, 
the greater floppiness of the spins allowed by the sgn interaction, as compared to the 
usual spin-spin interaction, should cause the connected correlation functions to fall 
off more rapidly with the distance between the spins in the sgn model. Third, models 
such as those investigated in Kohring et al (1986) and Kohring and Shrock (1987) 
with both continuously and discretely valued interactions show a wealth of new features 
associated with the interplay between the two interactions. It would be worthwhile to 
study further models of this sort to elucidate their general behaviour. 
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